Galaxy

The Mystery Of The Exploding Star

The Mystery Of The Exploding Star

In addition to sporting the heavy mass of 130 to 250 times that of our Sun, candidate progenitor stars for pair-instability supernovae must also have slow to moderate rotation rates, as well as a very low metallicity. Low metallicity means that the candidate progenitor star for such special, catastrophic, and weird supernovae must be made up almost entirely of hydrogen and …

Fatal Attractions Among The Stars

Fatal Attractions Among The Stars

All of the stars in the observable Universe, both large and small, live out their entire nuclear-fusing main-sequence “lives” by keeping a very delicate and necessary balance between two ancient foes–gravity and radiation pressure. The main-sequence refers to hydrogen-burning stars on the Hertzsprung-Russell Diagram of Stellar Evolution. Main-sequence stars still have enough nuclear-fusing hydrogen fuel to keep themselves bouncy against the …

stellar nucleosynthesis

stellar nucleosynthesis

Today, our Sun is still sufficiently youthful and bouncy to go on burning hydrogen in its heart by way of nuclear fusion–which continually creates heavier and heavier atomic elements out of lighter ones (stellar nucleosynthesis). But our Sun’s looks will change when it finally begins to run out of its necessary supply of hydrogen fuel. At …

Hyperactive Comets

Hyperactive-Comets

Where did Earth’s water come from? The origin of water on Earth, or the reason why there is more liquid water on Earth than on the other rocky planets in our Solar System, is unknown. There are numerous more or less mutually compatible solutions to the mystery of how water may have pooled on Earth’s …

Supernova Explode

Brilliant and powerful supernova blasts usually herald the explosive “death” of a massive star that has burned up its necessary supply of nuclear-fusing fuel, and has collapsed either into a dense stellar corpse called a neutron star or–in the case of the most massive stars of all–into a stellar mass black hole. However, relatively small, solitary stars like our …